In Depth | 26 September 2012
3D printing: The desktop drugstore
By Katharine Sanderson
“Learning while doing” is the philosophy behind the educational project in Pabal called the Vigyan Ashram – part of a worldwide project called FabLab, set up by physicist and computer engineer Neil Gershenfeld at Massachussetts Institute of Technology. Through this initiative, local villagers are taught to find ways of solving problems using kit given to them by MIT. With the ashram’s FabLab fully set up in 2004, the first project involved making a sensor to check milk quality. Later this year, Amitraj Deshmukh hopes to build something for the ashram that might prove to be a life-saving piece of kit in remote regions like this – a 3D printer.
Like your average desktop printer, these three-dimensional versions have a set of injectors that move back and forth, up and down. The inks are printed layer by layer and build up into a 3D form. Inks range from plastics to silicone to ice to cookie dough to human cells. The technology has been around for around two decades – engineers and designers have been using this to create prototypes – but it’s only recently that lowering production costs has brought its potential to the reach of the public.
Now, companies such as MakerBot are selling 3D printers for under $2,000, others are even trying to make replicas that could be yours for just over $1,000. A report earlier this year stated that the global market for 3D printing could reach $2.99 billion by 2018. And its potential has already grabbed the media’s attention, with reports on how we will be able to print just about anything, from toys to guns, to food like burritos.
You could see 3D printing as rampant consumerism gone crazy, or you could see it as a world in which consumers become creators – saving waste, packaging and air miles. In regions of the world where “stuff” is not the ubiquitous commodity it is in western societies, though, cheap 3D printing could have a profound impact on the lives of the have-nots, not just furnishing the haves with the coolest piece of gadgetry around.
In a farming culture like India, a 3D printer could allow small parts for broken tractors to be printed, or custom-made connectors for irrigation systems cobbled together from metre upon metre of different types of hose. And take a faculty as basic but as important as sight. Glasses frames are easy to change in the western world, but in developing countries, they are expensive or impossible to replace, according to Phil Reeves, managing director of Econolyst, a UK-based consultancy in rapid manufacturing. “Often lenses outlive the frames in developing countries,” he says. If a village, or nearby town, has a 3D printer and access to some basic polymer raw materials, a new set of frames – custom made to fit the lenses – could be knocked out in no time.
Vital organs
The opportunity to do so stems from a bright idea that engineers Hod Lipson and Evan Malone at Cornell University in Ithaca, New York came up with in 2006. Their Fab@Home project aimed to bring cheap 3D printers, and the open source software to run them, to the masses. With these tools in hand and the right inks, anyone, anywhere can print their own plastic toys, gadgets, food in their suburban garage, or in a school in a remote Indian village.
Printers that create artificial limbs, cheap drugs and replacement
organs could radically change medicine in poorer countries. But can this
technology deliver?
A small Indian village is perhaps the last place you would expect to
see the future of manufacturing, but 70 kilometres (43.5 miles) away
from Pune in the Maharashtra region there are plans to create one of the
hottest pieces of technology around. Farming may be the main occupation
in Pabal, but an educational centre at the heart of its community hopes
that later this year it will have the ability to solve practical
problems in a way never possible before.“Learning while doing” is the philosophy behind the educational project in Pabal called the Vigyan Ashram – part of a worldwide project called FabLab, set up by physicist and computer engineer Neil Gershenfeld at Massachussetts Institute of Technology. Through this initiative, local villagers are taught to find ways of solving problems using kit given to them by MIT. With the ashram’s FabLab fully set up in 2004, the first project involved making a sensor to check milk quality. Later this year, Amitraj Deshmukh hopes to build something for the ashram that might prove to be a life-saving piece of kit in remote regions like this – a 3D printer.
Like your average desktop printer, these three-dimensional versions have a set of injectors that move back and forth, up and down. The inks are printed layer by layer and build up into a 3D form. Inks range from plastics to silicone to ice to cookie dough to human cells. The technology has been around for around two decades – engineers and designers have been using this to create prototypes – but it’s only recently that lowering production costs has brought its potential to the reach of the public.
Now, companies such as MakerBot are selling 3D printers for under $2,000, others are even trying to make replicas that could be yours for just over $1,000. A report earlier this year stated that the global market for 3D printing could reach $2.99 billion by 2018. And its potential has already grabbed the media’s attention, with reports on how we will be able to print just about anything, from toys to guns, to food like burritos.
You could see 3D printing as rampant consumerism gone crazy, or you could see it as a world in which consumers become creators – saving waste, packaging and air miles. In regions of the world where “stuff” is not the ubiquitous commodity it is in western societies, though, cheap 3D printing could have a profound impact on the lives of the have-nots, not just furnishing the haves with the coolest piece of gadgetry around.
In a farming culture like India, a 3D printer could allow small parts for broken tractors to be printed, or custom-made connectors for irrigation systems cobbled together from metre upon metre of different types of hose. And take a faculty as basic but as important as sight. Glasses frames are easy to change in the western world, but in developing countries, they are expensive or impossible to replace, according to Phil Reeves, managing director of Econolyst, a UK-based consultancy in rapid manufacturing. “Often lenses outlive the frames in developing countries,” he says. If a village, or nearby town, has a 3D printer and access to some basic polymer raw materials, a new set of frames – custom made to fit the lenses – could be knocked out in no time.
Vital organs
The opportunity to do so stems from a bright idea that engineers Hod Lipson and Evan Malone at Cornell University in Ithaca, New York came up with in 2006. Their Fab@Home project aimed to bring cheap 3D printers, and the open source software to run them, to the masses. With these tools in hand and the right inks, anyone, anywhere can print their own plastic toys, gadgets, food in their suburban garage, or in a school in a remote Indian village.
No comments:
Post a Comment